A genetic screen for modifiers of a kinase suppressor of Ras-dependent rough eye phenotype in Drosophila.

نویسندگان

  • M Therrien
  • D K Morrison
  • A M Wong
  • G M Rubin
چکیده

kinase suppressor of Ras (ksr) encodes a putative protein kinase that by genetic criteria appears to function downstream of RAS in multiple receptor tyrosine kinase (RTK) pathways. While biochemical evidence suggests that the role of KSR is closely linked to the signal transduction mechanism of the MAPK cascade, the precise molecular function of KSR remains unresolved. To further elucidate the role of KSR and to identify proteins that may be required for KSR function, we conducted a dominant modifier screen in Drosophila based on a KSR-dependent phenotype. Overexpression of the KSR kinase domain in a subset of cells during Drosophila eye development blocks photoreceptor cell differentiation and results in the external roughening of the adult eye. Therefore, mutations in genes functioning with KSR might modify the KSR-dependent phenotype. We screened approximately 185,000 mutagenized progeny for dominant modifiers of the KSR-dependent rough eye phenotype. A total of 15 complementation groups of Enhancers and four complementation groups of Suppressors were derived. Ten of these complementation groups correspond to mutations in known components of the Ras1 pathway, demonstrating the ability of the screen to specifically identify loci critical for Ras1 signaling and further confirming a role for KSR in Ras1 signaling. In addition, we have identified 4 additional complementation groups. One of them corresponds to the kismet locus, which encodes a putative chromatin remodeling factor. The relevance of these loci with respect to the function of KSR and the Ras1 pathway in general is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A misexpression screen identifies genes that can modulate RAS1 pathway signaling in Drosophila melanogaster.

Differentiation of the R7 photoreceptor cell is dependent on the Sevenless receptor tyrosine kinase, which activates the RAS1/mitogen-activated protein kinase signaling cascade. Kinase suppressor of Ras (KSR) functions genetically downstream of RAS1 in this signal transduction cascade. Expression of dominant-negative KSR (KDN) in the developing eye blocks RAS pathway signaling, prevents R7 cell...

متن کامل

A genetic screen for novel components of the Ras/Mitogen-activated protein kinase signaling pathway that interact with the yan gene of Drosophila identifies split ends, a new RNA recognition motif-containing protein.

The receptor tyrosine kinase (RTK) signaling pathway is used reiteratively during the development of all multicellular organisms. While the core RTK/Ras/MAPK signaling cassette has been studied extensively, little is known about the nature of the downstream targets of the pathway or how these effectors regulate the specificity of cellular responses. Drosophila yan is one of a few downstream com...

متن کامل

A genetic screen for dominant modifiers of a cyclin E hypomorphic mutation identifies novel regulators of S-phase entry in Drosophila.

Cyclin E together with its kinase partner Cdk2 is a critical regulator of entry into S phase. To identify novel genes that regulate the G1- to S-phase transition within a whole animal we made use of a hypomorphic cyclin E mutation, DmcycEJP, which results in a rough eye phenotype. We screened the X and third chromosome deficiencies, tested candidate genes, and carried out a genetic screen of 55...

متن کامل

Erratum to: Genetic Screen for Genes Involved in Chk2 Signaling in Drosophila

Chk2 is a well characterized protein kinase with key roles in the DNA damage response. Chk2 is activated by phosphorylation following DNA damage, and relays that signal to various substrate proteins to induce cell cycle arrest, DNA repair, and apoptosis. In order to identify novel components of the Chk2 signaling pathway in Drosophila, we screened 2,240 EP misexpression lines for dominant modif...

متن کامل

A screen for modifiers of RacGAP(84C) gain-of-function in the Drosophila eye revealed the LIM kinase Cdi/TESK1 as a downstream effector of Rac1 during spermatogenesis.

In Drosophila, RotundRacGAP/RacGAP(84C) is critical to retinal organisation and spermatogenesis. We show that eye-directed expression of RacGAP(84C) or its GTPase activating protein (GAP) domain induces a dominant rough eye phenotype which we used as a starting point in a gain-of-function screen to identify new partners of RacGAP(84C). Proteins known to function in Ras, Rho and Rac signalling w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 156 3  شماره 

صفحات  -

تاریخ انتشار 2000